Loading... Please wait...

Call 408-734-3800 / Toll Free 877-272-7241

Menu

Custom Peptide Synthesis

custom-peptide-webpage-v8-1338x199-sm.png

 

EXPERTS AT COMPLEX SEQUENCES

CPC Scientific is one of the premier custom peptide producers in the world and we are proud to offer consistently reliable, high quality peptides directly to researches. Although CPC offers thousands of ready-to-ship catalog peptides, many of our orders require custom synthesis. We can produce peptides from 2 to >200 AAs in length at purities from 80% up to 99%. We can synthesize virtually any side-chain modification, including multiple disulfide bridges, phosphorylations, ring closing metathesis, click chemistry, FRET and TR-FRET labeling, glycosylation, PEGylation, bioconjugaton, main- and side-chain cyclization, C-terminal and N-terminal modifications, and more.

Please click here to submit a custom peptide quotation request. You will receive a quote within 24 hours from the receipt of your request. We offer high quality custom peptides with above average delivery times (unmodified peptides in about 2-3 weeks) at affordable prices. Throughout the manufacturing process, you will be updated if we foresee any changes to your delivery time so that you can plan your research accordingly. There is a simple, 100% satisfaction guarantee on all orders.

 

CUSTOM PEPTIDE MODIFICATIONS
N- & C-Terminal Modifications Lipopeptides Backbone Modifications Isotope-Labeled  Protein Conjugation
Hydrocarbon-Stapled Multiple Antigenic Peptides (MAPs) Unnatural Amino Acids Dye-Labeled Macrocyclization
FRET and TR-FRET Substrates  Phosphorylation Peptidomimetics Peptide Libraries Epitope Mapping
Glycosylation Sulfation / Sulfonation Depsipeptides PEGylation  
Cell-Penetrating Peptides Rhodamine 110 Labeled Selenocysteine Methylation  
Metal Chelating Conjugates Peptides for Click Chemistry Hydrophobic Sequences Long Sequences  

 

 

CPC Scientific takes great pride in our synthetic accomplishments. Please see the below modification examples and product citations to learn more about our synthetic capabilities. To access all of our product citations and publications, click here for our citation database.

  MODIFICATIONS   STRUCTURE EXAMPLE   SELECTED PRODUCT CITATIONS

Stable Isotope-Labeled (SIL) Peptides [1]

  • D-, 13C-, 15N-, or 18O-labeling capabilities

LEARN MORE  

Stable isotope-labeled peptides including 13C, 15N, O18, and Deuterium

[1] (a) Qureshi, Tabussom, and Natalie K. Goto. ACS Omega 1.2 (2016): 277-285. (b) Feng, Yuan, et al. The Journal of Physical Chemistry B 120.24 (2016): 5325-5339. (c) Zhen, Eugene Y., et al. Biochemical Journal (2015): BJ20151085. (d) Lee, Anita YH, et al. Clinical Chemistry 62.1 (2016): 227-235.

Peptides with N-Terminal Modifications [2]

  • Biotin, palmitoyl, PEG, dansyl, rhodamine, MCA, DNP, TAMRA, acetyl

 

Biotin N-terminal peptide modification for assays with streptavidin

[2] (a) Travers, Timothy S., et al. The Journal of Immunology 197.5 (2016): 1926-1936. (b) Halling, D. Brent, et al.  Journal of Biological Chemistry 284.30 (2009): 20041-20051. (c) L Emmons, Thomas, et al. Protein and Peptide Letters 19.5 (2012): 485-491. (d) Fu, Shushu, et al. Microbes and Infection 17.9 (2015): 665-670.

Peptides with C-Terminal Modifications [3]

  • Aldehyde, chloromethyl ketone, alkyl amide, alcohol, hydrazide, thioester, para-nitroaniline

 CPC Scientific offers a wide range of C-terminal modifications

[3] (a) Hassell, Kerry M., John R. Stutzman, and Scott A. McLuckey. Analytical Chemistry 82.5 (2010): 1594-1597. (b) Lin, Mai, Michael J. Welch, and Suzanne E. Lapi. Molecular Imaging and Biology 15.5 (2013): 606-613. (c) Wong, Tse Yuan. "Host protein manipulation as a mechanism in viral cardiomyopathy." Electronic Theses and Dissertations (ETDs) 2008+ (2012).

FRET & TR FRET Substrate Peptides [4]

 

  • Mca/Dnp, EDANS/Dabcyl, 5-FAM/CPQ2, CP488/CPQ2 or other quencher
  • 5-TAMRA/QSY7, Cy5/QSY21
  • Eu(III) chelate/QSY-7 (Ex/Em=340nm/613nm) for TR-FRET.

LEARN MORE   

 EDANS groups are a company modification to make FRET substrates

[4] (a) Dudani, Jaideep S., et al. Advanced Functional Materials 26.17 (2016): 2919-2928. (b) Kwong, Gabriel A., et al. Proceedings of the National Academy of Sciences 112.41 (2015): 12627-12632. (c) Zhu, S., et al. Journal of Thrombosis and Haemostasis (2016). (d) LaRock, Christopher N., et al. Science Immunology 100.200: 300 (2016).

Glycopeptides and Glycated Peptides [5]

 

  • O-linked and N-linked glycopeptides
  • alpha-, beta-Glc and beta-N-acetylgalactosamine (GalNAc)
  • Glucose: Ser(beta-D-GlcNAc), Thr(beta-D-GlcNAc, Asn(beta-D-GlcNAc), etc.
  • Galactose: Ser(alpha-D-GalNAc) and Thr(alpha-D-GalNAc)
  • Ser(Gal-beta(1-3)GalNAc) and Thr (Gal-beta(1-3)GalNAc)
  • Mannose: Ser(alpha-D-ManNAc), Thr(alpha-D-ManNAc, Ser(alpha-D-Man), Thr(alpha-D-Man)

glycosylation of peptides is an example of a post-translational modification 

[5] (a) Zhang, Shan-Yi, et al. "HMME-based PDT restores expression and function of transporter associated with antigen processing 1 (TAP1) and surface presentation of MHC class I antigen in human glioma." Journal of neuro-oncology 105.2 (2011): 199-210. (b) F.-H. Guo, Y.-Q. Chen, T. Liu, B.-J. Chen, J. Du. "Preparation and preliminary biological evaluation of n-Gluc-Lys([Al 18F]NOTA)-TOCA." Journal of Nuclear and Radiochemistry, 34(3), 157-165 (2012).

Cell-Penetrating Peptides [6]

 

  • TAT (transactivated-transcription) derivatives, penetratin, and transportan
  • Beta- and gamma-amino acids

 

Positive charges help peptides penetrate cell membranes

[6] (a) Ayhan, Dilay Hazal, et al. PLoS Biol 14.9 (2016): e1002552. (b) Kazemzadeh-Narbat, Mehdi, et al. Journal of Biomaterials and Tissue Engineering 4.11 (2014): 967-972.

Chelating Peptides [7]

 

  • DOTA (1,4,7,10-tetraazacyclododecane-N,N,N,N-tetraacetic acid)
  • NOTA (1,4,7-triazacyclononane-N,N,N-triacetic acid)
  • TETA (1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid)
  • DTPA (diethylenetriaminepentaacetic acid)
  • IDA (Iminodiacetic acid)

Conjugation of DOTA groups to peptides to chelate metal ions

[7] (a) Sai, Kiran Kumar Solingapuram, et al. "Peptide-based PET imaging of the tumor restricted IL13RA2 biomarker." Oncotarget 5 (2017). (b) Pandya, Darpan N., et al. Theranostics 6.5 (2016): 698. (c) Mebrahtu, Efrem, et al. Nuclear Medicine and Biology 40.2 (2013): 190-196. (d) Mastren, Tara, et al.  Molecular Imaging 14.10 (2015): 11-22. (e) Marquez, Bernadette V., et al. Journal of Nuclear Medicine 55.6 (2014): 1029-1034.

Cyclic Peptides [8]

 

  • Cys-Cys, Pen-Cys, and Pen-Pen cyclizations
  • Amide bond cyclizations
  • Head-to-tail, sidechain-to-sidechain, head-to-sidechain, sidechain-to-tail
  • Backbone-to-backbone, sidechain-to-backbone, backbone-to-sidechain, head-to-backbone, backbone-to-tail

RGD cyclic peptide for cancer research 

[8] (a) Young, Travis S., et al. Proceedings of the National Academy of Sciences 108.27 (2011): 11052-11056. (b) Day, Jonathan W., et al. Bioorganic & Medicinal Chemistry Letters 23.9 (2013): 2598-2600. (c) Zekavat, Behrooz, et al. Journal of The American Society for Mass Spectrometry 25.2 (2014): 226-236. (d) Ng, Quinn KT, et al. Biomaterials 35.25 (2014): 7050-7057.

Hydrocarbon-Stapled Peptides [9]

 

  • i, i+3; i, i+4; and i, i+7
  • Double staple and Stitched staple peptides

Hydroocarbon staples can stabilize helical structures in peptides

[9] (a) Phillips, Chris, et al. Journal of the American Chemical Society 133.25 (2011): 9696-9699. (b) Bhattacharya, Shibani, et al. Biopolymers 97.5 (2012): 253-264. (c) Zhang, Hongtao, et al. Retrovirology 10.1 (2013). (d) Sun, Tzu-Lin, et al. Biophysical Journal 104.9 (2013): 1923-1932.

Lipopeptides [10]

 

  • NH-, S- and O-palmytoyl, myristyl, octanoyl, and stearyl

 lipopeptide.png

[10] (a) Kwon, Ester J., et al. ACS Nano 10.8 (2016): 7926-7933. (b) Lo, Justin H., et al. Bioconjugate Chemistry (2016): 27 (10), pp 2323–2331. (c) Longo, Edoardo, et al. International Journal of Pharmaceutics 472.1 (2014): 156-164. (d) Corin, Karolina, et al. Plos One 6.11 (2011): e25067.

Main Chain Modified Peptides [11]

 

  • N-Methylation, ester bond & reduced amide bond (CH2 NH)

main-chain-modified-peptide.png

[11] (a) Crizer, David M., and Scott A. McLuckey. Journal of the American Society for Mass Spectrometry 20.7 (2009): 1349-1354. (b) Pack, Lindsey R., Keith R. Yamamoto, and Danica Galonić Fujimori. Journal of Biological Chemistry (2016): jbc-M115. (c) Gubeli, R. J., et al. Chemical Communications 52.22 (2016): 4235-4238. (d) Mentinova, Marija, and Scott A. McLuckey. Journal of the American Chemical Society 132.51 (2010): 18248-18257.

MAPS [12]

 

  • Multiple Antigenic Peptide System
  • 2-branch, 4-branch, and 8-branch available
  • Custom branching motifs

Branched peptides can increase pepitde immunogenicity

[12] (a) Mestecky, Jiri, et al. "Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women." AIDS Research and Human Retroviruses 27.5 (2011): 469-486.

Multiple Disulfide Bond Peptides [13]

 

  • Peptide toxins (Apamin, Charybdotoxin, Chlorotoxin, omega-Conotoxins)
  • Defensins (alpha-Defensin 6, beta-Defensin-1-4, Defensin HNP-1 and HNP-2
  • Agouti-related Protein (AGRP) (87-132)
  • Custom cyclization motifs

PEPTIDE TOXINS  
DEFENSINS  

multiple-disulfide-bridge-peptides.png

[13] (a) Wiens, Mayim E., and Jason G. Smith. "Alpha-defensin HD5 inhibits furin cleavage of human papillomavirus 16 L2 to block infection." Journal of Virology 89.5 (2015): 2866-2874. (b) Gounder, Anshu P., et al. "Critical determinants of human α-defensin 5 activity against non-enveloped viruses." Journal of Biological Chemistry 287.29 (2012): 24554-24562. (c) Schmidt, Nathan W., et al. "Arginine in α-defensins differential effects on bactericidal activity correspond to geometry of membrane curvature generation and peptide-lipid phase behavior." Journal of Biological Chemistry 287.26 (2012): 21866-21872. (d) Marangoni, M. Natalia, et al. "Membrane Cholesterol Modulates Superwarfarin Toxicity." Biophysical Journal 110.8 (2016): 1777-1788.

PEGylated Peptides [14]

 

  • PEG spacers and PEG carriers
  • Mini-PEG1 (8-Amino-3,6-dioxaoctanoic acid)
  • Mini-PEG2 (12-amino-4,7,10-trioxadodecanoic acid)
  • Mini-PEG3 (15-amino-4,7,10,13-tetraoxapenta-decanoic acid)
  • Custom PEG moieties

 pegylated-peptides.png

[14] (a) Dvir, Hay, et al. Proceedings of the National Academy of Sciences 109.18 (2012): 6916-6921. (b) Warren, Andrew D., et al. Journal of the American Chemical Society 136.39 (2014): 13709-13714. (c) Dudani, Jaideep S., et al. ACS Nano 9.12 (2015): 11708-11717. (d) Dudani, Jaideep S., et al. Advanced Functional Materials 26.17 (2016): 2919-2928.

Peptides for Click Chemistry Work [15]

 

  • Peptide conjugation (dyes, PEG, radioligands, chelating molecules), cyclization, dimerization.
  • Ready-to-Click peptides
  • Copper-free click chemistry available

click-chemistry.png 

[15] (a) Graaf, Matthew D., et al.  ACS Chemical Biology (2016) 11 (10), 2829–2837. (b) Chen L, Cohen J, Song X, et al. Scientific Reports. (2016), 6:31899. (c) Lin, Tzu-Yin, et al. Biomaterials 104 (2016): 339-351. (d) Zhu, S., et al. Journal of Thrombosis and Haemostasis (2016), 14: 1070–81.

Dye-Labeled Peptides [16]

 

  • Cy3 and Cy5 equivalent, Dabcyl, 5-FAM, 5-TAMRA, Edans, FITC, AMC, AFC, pNA, Uniblue A, Alexa Fluor, Tide Fluor and quencher

CUSTOM FRET PEPTIDES  
CATALOG FRET SEQUENCES  

dye-labled-peptide.png

[16] (a) LaRock, Christopher N., et al. Science Immunology (2016), 100.200: 300. (b) Crites, Travis J., et al. The Journal of Immunology 193.1 (2014): 56-67. (c) Saenz, R., et al. Molecular Immunology 57.2 (2014): 191-199. (d) Lin, Kevin Y., et al. Nano Today 9.5 (2014): 550-559. (e) Sturm, Matthew B., et al. Science Translational Medicine 5.184 (2013): 184ra61-184ra61. (f) Huang, Qinhua, et al. Journal of Medicinal Chemistry 57.4 (2014): 1170-1187.

Peptide Libraries [17]

 

  • PEPscreen® custom peptide libraries
  • Purified and unpurified
  • Alanine scanning, truncation, random, and positional scanning libraries
  • Epitope mapping

LEARN MORE   

 peptide-library.png

[17] (a) Karlsson, Erik A., et al. mBio 7.4 (2016): e01144-16. (b) Falta, Michael T., et al. "Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease." The Journal of Experimental Medicine 210.7 (2013): 1403-1418. (c) Shojaei, Farbod, et al. Journal of Experimental & Clinical Cancer Research 31.1 (2012): 1. (d) Wang, Xuelian, et al. Cancer Immunology, Immunotherapy 58.2 (2009): 301-308.

Phosphorylation [18]

 

  • Phosphoserine, phosphothreonine, and phosphotyrosine
  • Phosphotyrosine mimic Pmp (phosphonomethylene phenylalanine)
  • Multiple sites

phosphorylated-peptides.png 

[18] (a) Skjevik, Åge Aleksander, et al. Journal of Molecular Biology 426.1 (2014): 150-168. (b) Havukainen, Heli, et al. The Journal of Experimental Biology 215.11 (2012): 1837-1846. (c) Leone, Marilisa, et al. Chemical Biology & Drug Design 77.1 (2011): 12-19. (d) Halskau, Øyvind, et al. Journal of Biological Chemistry 284.47 (2009): 32758-32769.

Rhodamine 110 Peptides [19]

 

  • Minimal autofluorescence interference
  • Enzyme substrates, caspases, and custom sequences

CATALOG Rh110 PEPTIDES  

 rhodamine-peptide2.png [19] (a) Zhang, Nenggang, et al. "Identification and characterization of separase inhibitors (sepins) for cancer therapy." Journal of Biomolecular Screening 19.6 (2014): 878-889.

Sulfated Peptides [20]

 

  • Tyrosine [Tyr(SO3H)], serine [Ser(SO3H)] and threonine [Thr(SO3H)] O-sulfation
  • Experts in handling unstable sulfated peptides

sulfated-peptide.png

[20] (a) Wang, Chao, et al. "Phytosulfokine is involved in positive regulation of Lotus japonicus nodulation." Molecular Plant-Microbe Interactions 28.8 (2015): 847-855.